Redox Reactions: Electron Transfer

(see H&S, 3rd Ed. Sect. 26.5, pp. 895-900)

Inner Sphere: bridge bond formed between redox partners and the bridging group often (though not always) transfers

Outer Sphere: no direct bond between redox partners and no change in coordination sphere

Inner sphere mechanism – three distinct steps:

- 1) substitution to form a bridge between oxidant and reductant
- 2) actual electron transfer
- 3) separation of the products (often with transfer of the bridge ligand)

Taube's classical 1953 experiment (Nobel Prize 1983):

$$\begin{split} & [\text{Co(NH}_3)_5\text{Cl}]^{2^+} + [\text{Cr(H}_2\text{O})_6]^{2^+} + 5\text{ H}_2\text{O} \rightarrow \\ & \text{low spin Co(III)} & \text{high spin Cr(II)} \\ & \text{non-labile} & \text{labile} \\ & & [\text{Co(H}_2\text{O})_6]^{2^+} + [\text{Cr(H}_2\text{O})_5\text{Cl}]^{2^+} + 5\text{ NH}_3 \\ & \text{high spin Co(II)} & \text{Cr(III)} \\ & & \text{labile} & \text{non-labile} \end{split}$$

Proceeds via the following steps:

1) $[Co(NH_3)Cl]^{2+}$ + $[Cr(H_2O)]^{2+}$ \rightarrow

 $[(NH_3)_5Co(\mu-Cl)Cr(H_2O)_5]^{4+} + H_2O$

3) $[(NH_3)_5Co(\mu-Cl)Cr(H_2O)_5]^{4+} + H_2O \rightarrow$

 $[(NH_3)_5Co(H_2O)]^{2+} + [ClCr(H_2O)_5]^{2+}$ high spin Co(II) Cr(III) labile non-labile

followed by a 4th step in this case, because the Co(II) product is substitution labile:

4) $[(NH_3)_5Co(H_2O)]^{2+} + 5 H_2O \rightarrow [Co(H_2O)_6]^{2+} + 5 NH_3$

How do we know Cl⁻ doesn't fall off before or after electron transfer?

Both the starting Co^{3+} (d⁶) and product Cr^{3+} (d³) chloride complexes are substitutionally inert so CI^- transfer must have occurred via a bridge species.

It is possible for any of the three steps to be rate limiting depending on the particular ligand set and metal dⁿ count:

Egs.

Taube's experiment has rate limiting electron transfer because Cr(II) (d⁴, Jahn Teller ion) is substitutionally labile but...

replace Cr(II) with V(II) (d^3 , inert) as $[V(H_2O)_6]^{2+}$ makes the first step rate limiting.

What is the effect of the nature of X⁻ in $[Co(NH_3)_5X]^{2+}$ likely to be if:

a) step 1 is rate limiting?

very little effect since mostly affected by lability of leaving group on partner (assuming I_D mechanism is operative)

b) step 2 is rate limiting?

some effect because the stronger the bridge, the better electronic effects are transmitted:

X- order: $F^- < CI^- < Br^-$, $OH^- < I^-$

Electronic communication through the ligand is important:

k depends on nature of Y:

large if Y = CH=CH, C(O), N, O (conjugated system)

small if $Y = CH_2$, CH_2CH_2 (saturated linkers)

In general, single atoms, small conjugated units like CN^- or SCN^- and larger conjugated π -systems facilitate electron transfer

Outer sphere mechanism

- complexes are usually kinetically inert
- quantum mechanical 'tunneling' of e⁻ between metals

Self-exchange outer sphere redox rates (from Table 26.9 text):

 $[ML_6]^{2+} + [ML_6]^{3+} \rightarrow [ML_6]^{3+} + [ML_6]^{2+}$

Μ	n L	d ⁿ , spin states	k (L mol ⁻¹ s ⁻¹)
Fe	3 bipy	d ⁵ ls, d ⁶ ls	>10 ⁶
Os	3 bipy	d^5 ls, d^6 ls	>10 ⁶
Co	3 phen	d ⁶ ls, d ⁷ hs	40
Fe	6 H ₂ O	d ⁵ hs, d ⁶ hs	3
Co	3 en	d ⁶ ls, d ⁷ hs	10 ⁻⁴
Co	6 NH ₃	d ⁶ ls, d ⁷ hs	10 ⁻⁶

Considerations in an outer sphere mechanism:

- 1) reactants must get close together for tunneling to occur
 - electrostatic repulsion slows rate
- 2) bond lengthening and shortening must occur
 - even though ∆G⁰ must be zero in these reactions, individual M-L bonds must increase or decrease in length appropriate to the metal oxidation state (higher ox. st. results in shorter bonds in most cases)
- 3) Franck-Condon principle must be obeyed
 - electronic transitions (and electron transfer) occur on a far shorter timescale than molecular vibrations (nuclear motion)
 - this means that electron transfer will only occur when the complexes are distorted to the appropriate geometry for the products – i.e., this imposes an electronic barrier on the rate of electron transfer

- as a result, the larger the bond length changes required, the larger the barrier and the slower the rate:
- Eg. [Co(NH₃)₆]^{2+/3+} is a change from low spin d⁶ to high spin d⁷ and the average Co-N distance changes from 1.96 Å (Co³⁺) to 2.11 Å (Co²⁺), plus there is a spin change required so the rate is very slow
- *Eg.* $[Fe(bipy)_3]^{2+/3+}$ adds only one electron to a low spin d⁵ configuration going to low spin d⁶ (t_{2g}^5 to t_{2g}^6) and this results in small changes in bond lengths (1.96 to 1.97 Å) and rapid electron transfer rates
 - π-bonding ligands have low lying empty MO's that facilitate intermolecular electron transfer as well:
- Eg. Compare [Co(phen)₃]^{2+/3+} and [Co(NH₃)₆]^{2+/3+}
 Rate difference of about 10⁷ in electron transfer caused by phen's ability to accept electrons and act as a kind of *'transfer station'* for electrons